¿Qué fue de la fertilización oceánica?


Hace unos años, la fertlización océanica con hierro como forma de lucha contra el cambio climático, fue un auténtico boom. En el último año, el tema ha estado un poco parado, pero ¿qué ha sido de esta fertilización? ¿Se sigue trabajando con la idea o se ha abandonado? ¿Funcionó o fue un fracaso?

Experimento IronEx I  - Fuente Chapter 13 Ocean Productivity
Experimento IronEx I – Fuente (ppt) Chapter 13 Ocean Productivity
Nota: Esta entrada la publiqué originalmente en Hablandodeciencia ¿Qué fue de la fertilización oceánica?

Uno de los mecanismos para mantener constantes las concentraciones atmosféricas de dióxido de carbono (CO2), el principal gas implicado en el cambio climático, ha sido la fijación de CO2 y su secuestro, en sumideros naturales como bosques, turberas u océanos. Éstos, actúan en la regulación global del clima y en la regulación atmosférica de CO2, al ser el principal sumidero de carbono, absorbiendo cerca del 50% del carbono emitido. ¿Cómo?

1) Debido a la elevada solubilidad del CO2 con el agua, hay un intercambio atmósfera-océano y en las épocas de “enfriamiento atmosférico” hay una retirada del CO2 por acción de las corrientes termohalinas, 2) la precipitación del CO2 disuelto como bicarbonato (HCO3-), en carbonato de calcio (CaCO3) realizado por corales y otros invertebrados y 3) Bomba biológica, realizada por la actividad fotosintética de las algas microscópicas que constituyen el fitoplancton marino, a pesar de que apenas representan el 1% de la biomasa fotosintética, son los responsables de aproximadamente el 50% de la fijación de Carbono oceánico (Falkowski, 2000).

Sin embargo, el océano es incapaz de absorber el exceso de CO2, por lo que los procesos que acabamos de ver, en la actualidad ven mermada su capacidad, entre otras cosas, por procesos de acidificación oceánica o por la reducción del fitoplancton oceánico (Boyce et al., 2010; Cao & Caldeira, 2010). En este artículo vamos a intentar dar una aproximación de lo que se ha estado realizando para mejorar la fijación de CO2 por el mecanismo de la bomba biológica, mediante la fertilización oceánica con Hierro (Fe), nutriente limitante del fitoplancton. (Denman, 2008; Huesemann, 2008).

Desarrollo

Anteriormente a los años 80, había una aproximación de cómo afectaban las diferentes concentraciones de metales y nutrientes a la cantidad de fitoplancton y es a partir de estos años, cuando se plantea la existencia de zonas oceánicas con alta concentración de macronutrientes (Nitrato, Fosfato y Ácido silícico) pero baja de clorofila, conocidas como Regiones HNLC (High-Nutrient, low-chlorophyll).

Con una ocupación cercana del 20% de la superficie oceánica, comprenden el Pacífico ecuatorial y el Antártico y están caracterizadas por tener afloramientos de nutrientes por la circulación oceánica, pero alejadas de los desiertos, con lo que apenas llegan partículas en suspensión, como las partículas de Fe. Por ejemplo, la cianobacteria Trichodesmium es abundante en el Mar Arábigo, por la existencia de vientos procedentes de la Península Arábiga, cargados de arena y partículas en suspensión como el Fe. Las bajas concentraciones de clorofila, se deben a la reducción de micronutrientes como el Fe, necesario para la asimilación de CO2 en la fotosíntesis, actuando como nutriente limitante (Martin & Fitzwater 1988; Brand, 1991).

En 1993 se inician los primeros estudios para comprobarlo in situ, con la expedición IronEx I, que añadió de forma experimental en una zona de 100 km2, casi 400 kg de Fe. Se observó cómo la concentración de clorofila aumentaba 3 veces, aunque al poco tiempo decaía. En 1995 con la IronEx II, se fertilizó un área de 1.200 km al SO de las Galápagos con 450 kg. de Fe y se ve la existencia de un bloom de diatomeas, aumentando 27 veces la concentración de clorofila (Hanson et al. 2000).

Resultados similares también se vuelven a observar con más expediciones (1998-2002) con la Voyage 2, Soiree, EisenEx, SEEDS o SOFeX (Markels & Barber, 2001; Buesseler et al. 2004; Boyd & Bowman, 2008), observándose incrementos en las concentraciones de clorofila, aunque no se mantenían, por la falta de nutrientes constantes (Trick et al., 2010), lo que provoca el inicio de una controversia en el mundo científico sobre los posibles efectos que podría tener tanto en el medio acuático (Johnson & Karl, 2002).

Efecto de la fertilización oceánica y el crecimiento de copépodos
Efecto de la fertilización oceánica y caída de las poblaciones de diatomeas – Fuente SOEST (University of Hawai’i)

El espaldarazo definitivo a la necesidad de fertilizar el océano para aumentar el fitoplancton y por tanto inducir una mayor retirada de CO2 atmosférico, llegó cuando se comprobó que los océanos tenían falta de Fe y por tanto la fotosíntesis era menos efectiva (Behrenfeld et al., 2006). Tras 12 años y 58.000 km. muestreando fitoplancton, observaron que en el Pacífico, había una falta de Fe, por lo que no podía hacer de forma correcta la fotosíntesis, dejando de fijar entre el 2 y 4% del CO2 atmosférico al año.

En 2007, la expedición EIFEX, comprobó que el fitoplancton se hundía a los 35 días, después de esparcir 3 Tm. de Fe. Con estos resultados, comenzaron a aparecer otros proyectos públicos y privados (Planktos, Climos, GreenSea Ventures o LOHAFEX) (Kintisch, 2007).

Experimento EIFEX - Adaptado de Should Oceanographers Pump Iron? Science Vol 318: 1368-1370

Experimento EIFEX – Adaptado de Should Oceanographers Pump Iron? Science Vol 318: 1368-1370

El más polémico, ha sido el LOHAFEX, un proyecto indio-alemán, que consistió en verter 20 Tm. de Sulfato de Hierro (FeSO4), en 300 km2 del Océano Antártico, a pesar de las protestas de Argentina.

La intención era comprobar los efectos de la fertilización y el aumento del fitoplancton, así como en la cadena trófica, especialmente el krill y en caso de salir bien, la idea de los investigadores sería que fertilizando los 50 millones de km2 del Océano Antártico, la biomasa equivalente a 20 grC • m-2, se hundiría a 1.000 m. de profundidad y retirarían de la Atmósfera sobre 1 Gt de Carbono anualmente (González, 2009).

La idea inicial era que las partículas muertas de fitoplancton fueran hacia el fondo y aunque a los 14-15 días se observó un aumento de la concentración de fitoplancton, aquellas aguas eran escasas en ácido silícico, necesario para el frústulo de las diatomeas, por lo que no funcionó, al favorecer el crecimiento de copépodos y a su vez de anfípodos (Brahic, 2009). De esta forma, la absorción de CO2 fue menor de la prevista, ya que todo el fitoplancton no se hundió en el fondo, con lo que la hipótesis inicial de que el fitoplancton una vez muerto se hundiría en el fondo y por tanto se retiraría más CO2, no era factible.

En otro experimento iniciado en 2007 y realizado en el Golfo de Alaska (Trick et al., 2010), se vio cómo el crecimiento de diatomeas del género Pseudonitzschia, productoras de la sustancia tóxica del ácido domoico (DA) eran mayores que de las resto de especies de diatomeas. Mediante muestras recogidas en la Ocean Station Papa (50°N, 145°W) donde en años previos se habían realizado otros experimentos, se vio que sólo había presente una especie como era P. turgidula.

Las muestras se cultivaron en laboratorio y a pesar del aumento de la biomasa total de clorofila hasta en un 40%, la fertilización de Fe y también con trazas de cobre (otro nutriente limitante), favoreció más a Pseudonitzschia, que al resto de especies del fitoplancton no tóxicas, doblando su abundancia en 9 días, con lo que el aumento de DA perjudicaría a otros organismos como peces y aves marinas, obligando al cierre de pesquerías, por lo que relación coste/beneficio, sería negativa, al provocar daños sobre el ecosistema. Aunque la existencia de especies de Pseudonitzschia ya se comprobó en otros experimentos, provocando el aumento de copépodos, este era uno de los primeros trabajos en los que se comprobaba de forma controlada el aumento del DA.

Finalmente en uno de los artículos más recientes sobre el tema de la expedición EIFEX, se ha visto, que la fertilización oceánica, parece que funciona al demostrarse que una proporción sustancial de carbono de una floración inducida de algas se hundió hasta el fondo del mar profundo (Smetacek et al., 2012). En un artículo publicado el año pasado en Nature, pero con datos de 2004, anteriores a los del EIFEX que comentamos anteriormente, vieron cómo parecía que funcionaba lo de hundir el fitoplancton.

“Hemos sido capaces de demostrar que más del 50 por ciento de la floración de fitoplancton se hundió por debajo de 1000 metros de profundidad lo que indica que su contenido de carbono puede ser almacenado en el océano profundo y en los sedimentos del fondo marino subyacentes en escalas de tiempo de más de un siglo”. “La controversia en torno a los experimentos de fertilización con hierro ha dado lugar a una evaluación exhaustiva de los resultados antes de su publicación”, comentaban los autores como una explicación para la larga demora entre la realización del experimento y la publicación final en Nature.

Conclusiones

El potencial de retención de CO2 mediante la fertilización oceánica es limitado y el riesgo de unos posibles efectos secundarios son muy elevados (Oschlies et al., 2010), por lo que antes de llevar a cabo los resultados in vivo, conviene intentar conocer en la medida de lo posible, los diferentes procesos implicados para evitar daños sobre el ecosistema. Alguno de los últimos experimentos, parece funcionar y tener resultados positivos, pero sin embargo, es insuficiente como para lanzar las campanas al vuelo y decir que la fertilización oceánica funciona.

Para finalizar, les dejo una conferencia en Youtube de Antonio Tovar Sánchez, investigador del Departamento de Investigación en Cambio Global del CSIC bajo el título “Fertilización con hierro del océano: ¿funciona?

Anuncios

Acerca de andresrguez

Doctor por la Universidade de Vigo. Campo de especialización: comportamiento del plomo en suelos mineros, urbanos y campos de tiro, a través de técnicas espectroscópicas, toxicológicas y aplicación de nanopartículas.
Esta entrada fue publicada en Uncategorized y etiquetada , , , , , , . Guarda el enlace permanente.

5 respuestas a ¿Qué fue de la fertilización oceánica?

  1. Pingback: ¿Qué fue de la fertilización oceánica?

  2. Pingback: ¿Qué fue de la fertilización oceánica? | Ciencias y cosas

  3. David dijo:

    Muy interesante… Me pregunto si el hecho de que se estén derritiendo los glaciares podría estar aportando una gran cantidad de hierro que contrarreste en algo el CC al facilitar que la población de diatomeas aumente, ¿algún estudio al respecto?

    Me gusta

    • joselitoeldelavozdeoro dijo:

      En principio la ausencia de casquetes polares hace que disminuya el gradiente de temperaturas entre polos y ecuador. Esto a su vez disminuye de forma global la intensidad de los vientos, los cuales transportan Fe y otros elementos de origen terrígeno a zonas alejadas de la costa (al contrario que el agua que vierte en zonas costeras. Hay que tener en cuenta que no todas las formas químicas del Fe son asimilables por el fitoplancton y aproximadamente el Fe está sólo disponible para el fitoplancton durante aproximadamente 7 días desde su llegada al mar). Resultado, menor fertilización cuanto menos hielo haya en los polos.

      Me gusta

  4. […]¿Qué fue de la fertilización oceánica? | Ciencias y cosas|http://www.cardonationscenter.com[…]
    Health Insurance For Individuals In Wisconsin http://www.ez-on-web.com/health-insurance-for-individuals-in-wisconsin.html

    Me gusta

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s